รูปเรขาคณิต / รูปทรงเรขาคณิต


รูปเรขาคณิต
รูป เรขาคณิต หมายถึง รูปต่างๆ ทางเรขาคณิต เช่น







รูปทรง เรขาคณิตรูปทรงเรขาคณิต หมายถึง รูปที่มีส่วนที่เป็นพื้นผิว ส่วนสูง และส่วนลึก หรือหนา




รูปเรขาคณิตสามมิติ
ระดับชั้นมัธยมต้นนี้ นักเรียนควรมีพื้นฐานเกี่ยวกับ พื้นที่ผิวและปริมาตรที่ควรทราบ ดังนี้
ปริซึม
ปริซึม เป็นรูปเรขาคณิตสามมิติที่มีหน้าตัด(ฐาน) ทั้งสองข้างเป็นรูปหลายเหลี่ยมที่เท่ากันทุกประการหน้าตัด (ฐาน) ทั้งสองอยู่ในระนาบที่ขนานกัน มีหน้าข้างเป็นรูปสี่เหลี่ยมมุมฉาก การเรียกชื่อปริซึมจะเรียกตามรูปหน้าตัดของปริซึมส่วนต่างๆของปริซึมมีชื่อเรียก ดังนี้
ทรงกระบอก
ทรงกระบอก เป็นรูปเรขาคณิตสามมิติที่มีฐานสองฐานเป็นรูปวงกลมที่เท่ากันทุกประการและอยู่บนระนาบที่ขนานกัน และเมื่อตัดรูปเรขาคณิตสามมิตินั้นด้วยระนาบที่ขนานกับฐานแล้ว จะได้หน้าตัดเป็นวงกลมที่เท่ากันทุกประการกันฐานเสมอ ด้านข้างเป็นผิวเรียบโค้งส่วนต่างๆของทรงกระบอก
ทรงกระบอก เป็นรูปเรขาคณิตสามมิติที่มีฐานสองฐานเป็นรูปวงกลมที่เท่ากันทุกประการและอยู่บนระนาบที่ขนานกัน และเมื่อตัดรูปเรขาคณิตสามมิตินั้นด้วยระนาบที่ขนานกับฐานแล้ว จะได้หน้าตัดเป็นวงกลมที่เท่ากันทุกประการกันฐานเสมอ ด้านข้างเป็นผิวเรียบโค้งส่วนต่างๆของทรงกระบอก
ข้อแตกต่างของปริซึมกับทรงกระบอก คือ
- ฐาน ปริซึมเป็นรูปหลายเหลี่ยมทรงกระบอกเป็นวงกลม- ด้านข้าง ปริซึมเป็นรูปสี่เหลี่ยมผืนผ้าทรงกระบอกเป็นผิวเรียบโค้ง

พีระมิด
พีระมิด เป็นรูปเรขาคณิตสามมิติที่มีฐานเป็นรูปเหลี่ยมใดๆ มียอดแหลมที่ไม่อยุ่บนระนาบเดียวกันกับฐาน และหน้าทุกหน้าเป็นรูปสามเหลี่ยมที่มีจุดยอดร่วมกันที่ยอดแหลมนั้น การเรียกชื่อพีระมิดจะเรียกตามรูปฐานของพีระมิด
ส่วนต่างๆของพีระมิด
กรวย เป็นรูปเรขาคณิตสามมิติที่มีฐานเป็นรูปวงกลม มียอดแหลมที่ไม่อยู่ในระนาบเดียวกันกับฐาน และเส้นที่ต่อระหว่างจุดยอดกับจุดใดๆ บนขอบของฐานเป็นส่วนของเส้นตรงดด้านข้างเป็นผิวโค้งเรียบระมิ
ส่วนต่างๆของกรวย
ข้อแตกต่างของพีระมิดกับกรวย คือ- ฐาน พีระมิดฐานรูปหลายเหลี่ยมกรวยฐานรูปวงกลม
- ด้านข้าง พีระมิดเป็นรูปสามเหลี่ยมผืนผ้า
กรวยเป็นผิวเรียบโค้ง
ทรงกลม เป็น รูปเรขาคณิตสามมิติที่มีด้านข้างเป็นผิวโค้งเรียบ และจุดทุกจุดบนผิวโค้งอยู่ห่างจากจุดคงที่จุดหนึ่งเป็นระยะเท่ากัน เรียกจุดคงที่ว่า จุดศูนย์กลางของทรงกลม
เรียกระยะที่เท่ากันว่า รัศมีของทรงกลม
ส่วนต่างๆของทรงกลม
สูตรต่างๆของการหาพื้นที่รูปสี่เหลี่ยม ความยาวรอบรูปของรูปสี่เหลี่ยมใดใด=ผลบวกของด้านทุกด้าน สี่เหลี่ยมผืนผ้า=กว้าง คูณ ยาว สี่เหลี่ยมจัตุรัส=ด้าน คูณ ด้าน สี่เหลี่ยมด้านขนาน=สูง คูณ ฐาน สี่เหลี่ยมคางหมู=เศษหนึ่งส่วนสอง คูณ ผลบวกด้านคู่ขนาน คูณ สูง สี่เหลี่ยมขนมเปียกปูน=เศษหนึ่งส่วนสอง คูณ ผลคูณของเส้นทแยงมุม สี่เหลี่ยมใดใด=เศษหนึ่งส่วนสอง คูณ เส้นทแยงมุม คูณ ผลบวกของเส้นกิ่ง สี่เหลี่ยมรูปว่าว=เศษหนึ่งส่วนสอง คูณ ผลคูณของ[แก้ไข]รูปเรขาคณิตสองมิติ แบ่งตามลักษณะของด้าน หรือ ขอบของรูปนั้น เช่น รูปสามเหลี่ยม | |
รูปสี่เหลี่ยม รูปหลายเหลี่ยม หรือ รูปวงกลม เป็นต้น ตัวอย่างรูปเรขาคณิตสองมิติ | |
![]() ![]() ![]() ![]() | |
รูปสามเหลี่ยม รูปสี่เหลี่ยม รูปหลายเหลี่ยม รูปวงกลม | |
รูปเรขาคณิตสามมิติ เป็นรูปเรขาคณิตทรงสามมิติที่มีฐานหรือหน้าตัดเป็นรูปทรงต่างๆ เช่น | |
รูปทรงกระบอก รูปทรงกลม รูปพีระมิด รูปปริซึม รูปกรวย เป็นต้น ตัวอย่างรูปเรขาคณิตสามมิติ | |
![]() ![]() ![]() ![]() | |
รูปทรงกระบอก รูปทรงกลม รูปพีระมิด รูปปริซึม รูปทรงเรขาคณิต เป็นรูปที่ประกอบด้วยจุด เส้นตรง ส่วนโค้งต่าง ๆ และถ้าอยู่ในระนาบเดียวกัน เราก็เรียกว่ารูประนาบ แต่ถ้าหากเป็นรูปทรงที่มีความหนา ความลึก ความสูง เราก็เรียกว่ารูปสามมิติ
รูปทรงเรขาคณิต หากเราหยิบภาชนะต่าง ๆ ที่อยู่รอบตัวเราขึ้นมาจะพบว่าประกอบด้วย รูปทรงเรขาคณิต หลากหลายรวมกัน ความคิดเกี่ยวกับรูปทรงเรขาคณิตในแนวทางคณิตศาสตร์มีพัฒนาการมายาวนานหลายพันปีแล้ว [แก้ไข] รูปทรงเรขาคณิตแบบต่าง ๆ รู ปทรงกลม ลูกบอล แก้วน้ำ ภาชนะถ้วยชามต่าง ๆ ประกอบเป็นรูปร่างแบบต่าง ๆ ดังนั้นการจะอธิบายหรือออกแบบสิ่งต่าง ๆ จำเป็นต้องอาศัยทฤษฎีทางเรขาคณิต ปัจจุบันประเทศไทยกำลังจะมีรถไฟใต้ดิน ลองนึกดูว่า ถ้าจะเจาะอุโมงค์ จากที่หนึ่งให้ทะลุหรือชนกับการเจาะมาจากอีกแนวหนึ่งได้ ต้องใช้หลักการทางเรขาคณิตมาช่วย นักคณิตศาสตร์ เริ่มจากการกำหนดจุด จุดซึ่งไม่มีขนาด ไม่มีมิติ และถ้าเราให้จุดเคลื่อนที่แนวทางการเคลื่อนที่ของจุด ก่อให้เกิดเส้น หากหยิบแผ่นกระดาษมาหนึ่งแผ่น ผิวของแผ่นกระดาษเรียกว่าระนาบ รูปที่เกิดบนกระดาษนี้เรียกว่ารูประนาบ และถ้าดูที่ผิวของถ้วยแก้วที่เป็นรูปทรงกระบอก เราก็จะเห็นผิวโค้ง ซึ่งเราอาจมองรูปผิวโค้งของถ้วยแก้วในลักษณะสามมิติ [แก้ไข] มิติต่าง ๆ ของรูปทรงเรขาคณิต![]() รูปทรงเรขาคณิต เป็นรูปที่ประกอบด้วยจุด เส้นตรง ส่วนโค้งต่าง ๆ และถ้าอยู่ในระนาบเดียวกัน เราก็เรียกว่ารูประนาบ แต่ถ้าหากเป็นรูปทรงที่มีความหนา ความลึก ความสูง เราก็เรียกว่ารูปสามมิติ หากเราหยิบภาชนะต่าง ๆ ที่อยู่รอบตัวเราขึ้นมาจะพบว่าประกอบด้วย รูปทรงเรขาคณิต หลากหลายรวมกัน ความคิดเกี่ยวกับรูปทรงเรขาคณิตในแนวทางคณิตศาสตร์มีพัฒนาการมายาวนานหลายพันปีแล้ว |
ไม่มีความคิดเห็น:
แสดงความคิดเห็น